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ABSTRACT
We propose a communication- and computation-efficient dis-
tributed optimization algorithm using second-order informa-
tion for solving ERM problems with a nonsmooth regulariza-
tion term. Current second-order and quasi-Newton methods
for this problem either do not work well in the distributed
setting or work only for specific regularizers. Our algorithm
uses successive quadratic approximations, and we describe
how to maintain an approximation of the Hessian and solve
subproblems efficiently in a distributed manner. The pro-
posed method enjoys global linear convergence for a broad
range of non-strongly convex problems that includes the most
commonly used ERMs, thus requiring lower communication
complexity. It also converges on non-convex problems, so has
the potential to be used on applications such as deep learning.
Initial computational results on convex problems demonstrate
that our method significantly improves on communication
cost and running time over the current state-of-the-art meth-
ods.
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1 INTRODUCTION
We consider solving the following regularized problem in a
distributed manner:

min
𝑤∈R𝑑

𝐹 (𝑤) := 𝑓(𝑋𝑇𝑤) + 𝑔(𝑤), (1)

where 𝑋 is a 𝑑 by 𝑛 real-valued matrix, 𝑔 is a convex, closed,
and extended-valued proper function that can be nondiffer-
entiable, and 𝑓 is a differentiable function whose gradient is
Lipschitz continuous with parameter 𝐿 > 0. Each column of
𝑋 represents a single data point or instance, and we assume
that the set of data points is partitioned and spread across
𝐾 machines (i.e. distributed instance-wise). We can write 𝑋
as

𝑋 := [𝑋1, 𝑋2, . . . , 𝑋𝐾 ] ,

where 𝑋𝑘 is stored exclusively on the 𝑘th machine. We further
assume that 𝑓 shares the same block-separable structure and
can be written as follows:

𝑓
(︁
𝑋𝑇𝑤

)︁
=

𝐾∑︁
𝑘=1

𝑓𝑘
(︁
𝑋𝑇
𝑘 𝑤

)︁
.

Unlike our instance-wise setting, some existing works consider
the feature-wise partition setting, under which 𝑋 is parti-
tioned by rows rather than columns. Although the feature-
wise setting is a simpler one for algorithm design when 𝑔 is
separable, storage of different features on different machines
is often impractical.

The bottleneck in performing distributed optimization
is often the high cost of communication between machines.
For (1), the time required to retrieve 𝑋𝑘 over a network
can greatly exceed the time needed to compute 𝑓𝑘 or its
gradient with locally stored 𝑋𝑘. Moreover, we incur a delay
at the beginning of each round of communication due to
the overhead of establishing connections between machines.
This latency prevents many efficient single-core algorithms
such as coordinate descent (CD) and stochastic gradient and
their asynchronous parallel variants from being employed in
large-scale distributed computing setups. Thus, a key aim of
algorithm design for distributed optimization is to improve
the communication efficiency while keeping the computational
cost affordable. Batch methods are preferred in this context,
because fewer rounds of communication occur in distributed
batch methods.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1646

https://doi.org/10.1145/3219819.3220075
https://doi.org/10.1145/3219819.3220075
https://doi.org/10.1145/3219819.3220075


When 𝐹 is differentiable, many efficient batch methods
can be used directly in distributed environments to solve
(1). For example, Nesterov’s accelerated gradient (AG) [16]
enjoys low iteration complexity, and since each iteration of
AG only requires one round of communication to compute
the new gradient, it also has good communication complexity.
Although its supporting theory is not particularly strong,
the limited-memory BFGS (LBFGS) method [13] is popular
among practitioners of distributed optimization. It is the
default algorithm for solving ℓ2-regularized smooth ERM
problems in Apache Spark’s distributed machine learning
library [14], as it is empirically much faster than AG (see, for
example, the experiments in Wang et al. [22]). Other modified
batch methods that utilize the Hessian of the objective in
various ways are also communication-efficient under their
own additional assumptions [7, 12, 20, 26, 28].

When 𝑔 is nondifferentiable, neither LBFGS nor Newton’s
method can be applied directly. Leveraging curvature in-
formation from 𝑓 can still be beneficial in this setting. For
example, the orthant-wise quasi-Newton method OWLQN
[2] adapts the LBFGS algorithm to the special nonsmooth
case in which 𝑔(·) ≡ ‖ · ‖1, and is popular for distributed
optimization of ℓ1-regularized ERM problems. Extension of
this approach to other nonsmooth 𝑔 is not well understood,
and the convergence guarantees are only asymptotic, rather
than global.

To the best of our knowledge, for ERMs with general
nonsmooth regularizers in the instance-wise storage setting,
proximal-gradient-like methods [17, 23] are the only prac-
tical distributed optimization algorithms with convergence
guarantees. Since these methods barely use the Hessian infor-
mation of the smooth part (if at all), we suspect that proper
utilization of second-order information has the potential to
improve convergence speed and therefore communication effi-
ciency dramatically. We thus propose a practical distributed
inexact variable-metric algorithm for general (1) which uses
gradients and which updates information from previous it-
erations to estimate curvature of the smooth part 𝑓 in a
communication-efficient manner. We describe construction
of this estimate and solution of the corresponding subprob-
lem. We also provide convergence rate guarantees, which
also bound communication complexity. These rates improve
on existing distributed methods, even those tailor-made for
specific regularizers.

Our algorithm leverages the more general framework pro-
vided in Lee and Wright [9], and our major contribution in
this work is to describe how the main steps of the framework
can be implemented efficiently in a distributed environment.
Our approach has both good communication and computa-
tional complexity, unlike certain approaches that focus only
on communication at the expense of computation (and ulti-
mately overall time). We believe that this work is the first
to propose, analyze, and implement a practically feasible
distributed optimization method for solving (1) with gen-
eral nonsmooth regularizer 𝑔 under the instance-wise storage
setting.

Our algorithm and implementation details are given in
Section 2. Communication complexity and the effect of the
subproblem solution inexactness are analyzed in Section 3.
Section 4 discusses related works, and empirical comparisons
are conducted in Section 5. Concluding observations appear
in Section 6.

Notation
We use the following notation.
∙ 𝑓(𝑋𝑇𝑤) is abbreviated as 𝑓(𝑤).
∙ ‖ · ‖ denotes the 2-norm, both for vectors and for matrices.
∙ Given any symmetric positive semi-definite matrix 𝐻 ∈
R𝑑×𝑑 and any vector 𝑝 ∈ R𝑑, ‖𝑝‖𝐻 denotes the semi-norm√︀

𝑝𝑇𝐻𝑝.

2 ALGORITHM
At each iteration of our algorithm for optimizing (1), we
construct a subproblem that consists of a quadratic approxi-
mation of 𝑓 added to the original regularizer 𝑔. Specifically,
given the current iterate 𝑤, we choose a positive semi-definite
𝐻 and define

𝑄𝐻(𝑝;𝑤) := ∇𝑓(𝑤)𝑇𝑝+
1

2
‖𝑝‖2𝐻 + 𝑔(𝑤 + 𝑝)− 𝑔(𝑤),

the update direction is obtained by approximately solving

min
𝑝∈R𝑑

𝑄𝐻(𝑝;𝑤). (2)

A line search procedure determines a suitable stepsize 𝛼, and
we perform the update 𝑤 ← 𝑤 + 𝛼𝑝.

We now discuss the following issues in the distributed
setting: communication cost, the computation of ∇𝑓 , the
choice and construction of 𝐻, procedures for solving (2), and
the line search procedure. In our description, we sometimes
need to split some 𝑛-dimensional vectors over the machines,
in accordance with the following disjoint partition 𝐽1, . . . , 𝐽𝑘
of {1, . . . , 𝑑}:

𝐽𝑖 ∩ 𝐽𝑘 = 𝜑,∀𝑖 ̸= 𝑘, ∪𝐾𝑖=1𝐽𝑖 = {1, . . . , 𝑑}.

2.1 Communication Cost
For the ease of description, we assume the allreduce model of
MPI [15], but it is also straightforward to extend the frame-
work to a master-worker platform. Under this model, all
machines simultaneously fulfill master and worker roles, and
any data transmitted is broadcast to all machines. This can
be considered as equivalent to conducting one map-reduce
operation and then broadcasting the result to all nodes.
The communication cost for the allreduce operation on a
𝑑-dimensional vector under this model is

log (𝐾)𝑇initial + 𝑑𝑇byte, (3)

where 𝑇initial is the latency to establish connection between
machines, and 𝑇byte is the per byte transmission time (see,
for example, Chan et al. [5, Section 6.3]).

The first term in (3) also explains why batch methods
are preferable. Even if methods that frequently update the
iterates communicate the same amount of bytes, it takes
more rounds of communication to transmit the information,
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and the overhead of log(𝐾)𝑇initial incurred at every round of
communication makes this cost dominant, especially when
𝐾 is large.

In subsequent discussion, when an allreduce operation is
performed on a vector of dimension 𝑂(𝑑), we simply say
that 𝑂(𝑑) communication is conducted. We omit the latency
term since batch methods like ours tend to have only a small
constant number of rounds of communication per iteration.
By contrast, non-batch methods such as CD or stochastic
gradient require 𝑂(𝑑) or 𝑂(𝑛) rounds of communication per
epoch and therefore face much more significant latency issues.

2.2 Computing ∇𝑓

The gradient of 𝑓 has the form

∇𝑓(𝑤) = 𝑋∇𝑓(𝑋𝑇𝑤) =

𝐾∑︁
𝑘=1

(︁
𝑋𝑘∇𝑓𝑘(𝑋𝑇

𝑘 𝑤)
)︁
. (4)

We see that, except for the sum over 𝑘, the computation
can be conducted locally provided 𝑤 is available to all ma-
chines. Our algorithm maintains 𝑋𝑇

𝑘 𝑤 on the 𝑘th machine
throughout, and the most costly steps are the matrix-vector
multiplications between 𝑋𝑘 and ∇𝑓𝑘(𝑋𝑇

𝑘 𝑤), and 𝑋𝑇𝑤. The
local 𝑑-dimensional partial gradients are then aggregated
through an allreduce operation.

2.3 Constructing a good 𝐻 efficiently
We use the Hessian approximation constructed by the LBFGS
algorithm [13], and propose a way to maintain and utilize
it efficiently in a distributed setting. Using the compact
representation in Byrd et al. [4], given a prespecified integer
𝑚 > 0, at the 𝑡th iteration for 𝑡 > 0, let 𝑚̃ := min(𝑚, 𝑡), and
define

𝑠𝑖 := 𝑤𝑖+1 −𝑤𝑖, 𝑦𝑖 := ∇𝑓(𝑤𝑖+1)−∇𝑓(𝑤𝑖), ∀𝑖.

The LBFGS Hessian approximation matrix is

𝐻𝑡 = 𝛾𝑡𝐼 − 𝑈𝑡𝑀−1
𝑡 𝑈𝑇𝑡 , (5)

where

𝑈𝑡 := [𝛾𝑡𝑆𝑡, 𝑌𝑡] , 𝑀𝑡 :=

[︂
𝛾𝑡𝑆

𝑇
𝑡 𝑆𝑡, 𝐿𝑡
𝐿𝑇𝑡 −𝐷𝑡

]︂
, (6a)

𝛾𝑡 :=
𝑠𝑇𝑡−1𝑠𝑡−1

𝑠𝑇𝑡−1𝑦𝑡−1
, (6b)

and

𝑆𝑡 := [𝑠𝑡−𝑚̃, 𝑠𝑡−𝑚̃+1, . . . , 𝑠𝑡−1] , (7a)

𝑌𝑡 :=
[︀
𝑦𝑡−𝑚̃,𝑦𝑡−𝑚̃+1, . . . ,𝑦𝑡−1

]︀
, (7b)

𝐷𝑡 := diag
(︁
𝑠𝑇𝑡−𝑚̃𝑦𝑡−𝑚̃, . . . , 𝑠

𝑇
𝑡−1𝑦𝑡−1

)︁
, (7c)

(𝐿𝑡)𝑖,𝑗 :=

{︃
𝑠𝑇𝑡−𝑚−1+𝑖𝑦𝑡−𝑚−1+𝑗 , if 𝑖 > 𝑗,

0, otherwise.
(7d)

At the first iteration where no 𝑠𝑖 and 𝑦𝑖 are available, we
set 𝐻0 := 𝑎0𝐼 for some positive scalar 𝑎0. When 𝑓 is twice-
differentiable and convex, we use

𝑎0 :=
‖∇𝑓(𝑤0)‖2∇2𝑓(𝑤0)

‖∇𝑓(𝑤0)‖2
. (8)

If 𝑓 is not strongly convex, it is possible that (5) is only pos-
itive semi-definite. In this case, we follow Li and Fukushima
[11], taking the 𝑚 update pairs to be the most recent 𝑚
iterations for which the inequality

𝑠𝑇𝑖 𝑦𝑖 ≥ 𝛿𝑠
𝑇
𝑖 𝑠𝑖 (9)

is satisfied, for some predefined 𝛿 > 0. It can be shown that
this safeguard ensures that 𝐻𝑡 are always positive definite
and the eigenvalues are bounded within a positive range (see,
for example, the appendix of Lee and Wright [8]).

No additional communication is required to compute 𝐻𝑡.
The gradients at all previous iterations have been shared
with all machines through the allreduce operation, and the
iterates 𝑤𝑡 are also available on each machine, as they are
needed to compute the local gradient. Thus the information
needed to form 𝐻𝑡 is available locally on each machine.

We now consider the costs associated with the matrix
𝑀𝑡. In practice, 𝑚 is usually much smaller than 𝑑, so the
𝑂(𝑚3) cost of inverting the matrix directly is insignificant
compared to the cost of the other steps. However, if 𝑑 is
large, the computation of the inner products 𝑠𝑇𝑖 𝑦𝑗 and 𝑠𝑇𝑖 𝑠𝑗
can be expensive. We can significantly reduce this cost by
computing and maintaining the inner products in parallel
and assembling the results with 𝑂(𝑚) communication cost.
At the 𝑡th iteration, given the new 𝑠𝑡−1, we compute its inner
products with both 𝑆𝑡 and 𝑌𝑡 in parallel via the summations

𝐾∑︁
𝑘=1

(︁
(𝑆𝑡)

𝑇
𝐽𝑘,:(𝑠𝑡−1)𝐽𝑘

)︁
,

𝐾∑︁
𝑘=1

(︁
(𝑌𝑡)

𝑇
𝐽𝑘,:(𝑠𝑡−1)𝐽𝑘

)︁
,

requiring 𝑂(𝑚) communication of the partial sums on each
machine. We keep these results until 𝑠𝑡−1 and 𝑦𝑡−1 are dis-
carded, so that at each iteration, only 2𝑚 (not 𝑂(𝑚2)) inner
products are computed.

2.4 Solving the Subproblem
The approximate Hessian 𝐻𝑡 is generally not diagonal, so
there is no easy closed-form solution to (2). We will instead
use iterative algorithms to obtain an approximate solution
to this subproblem. In single-core environments, coordinate
descent (CD) is one of the most efficient approaches for
solving (2) [18, 25, 27]. Since the subproblem (2) is formed
locally on all machines, a local CD process can be applied
when 𝑔 is separable and 𝑑 is not too large. The alternative
approach of applying proximal-gradient methods to (2) may
be more efficient in distributed settings, since they can be
parallelized with little communication cost for large 𝑑, and
can be applied to larger classes of regularizers 𝑔.

The fastest proximal-gradient-type methods are acceler-
ated gradient (AG) [17] and SpaRSA [23]. SpaRSA is a basic
proximal-gradient method with spectral initialization of the
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parameter in the prox term. SpaRSA has a few key advan-
tages over AG despite its weaker theoretical convergence rate
guarantees. It tends to be faster in the early iterations of the
algorithm [24], thus possibly yielding a solution of acceptable
accuracy in fewer iterations than AG. It is also a descent
method, reducing the objective 𝑄𝐻 at every iteration, which
ensures that the solution returned is at least as good as the
original guess 𝑝 = 0

In the rest of this subsection, we will describe a distributed
implementation of SpaRSA for (2), with 𝐻 as defined in (5).
To distinguish between the iterations of our main algorithm
(i.e. the entire process required to update 𝑤 a single time)
and the iterations of SpaRSA, we will refer to them by main
iterations and SpaRSA iterations respectively.

Since 𝐻 and 𝑤 are fixed in this subsection, we will write
𝑄𝐻(·;𝑤) simply as 𝑄(·). We denote the 𝑖th iterate of the
SpaRSA algorithm as 𝑝(𝑖), and we initialize 𝑝(0) ≡ 0. We
denote the smooth part of 𝑄𝐻 by 𝑓(𝑝), and the nonsmooth
𝑔(𝑤 + 𝑝) by 𝑔(𝑝). At the 𝑖th iteration of SpaRSA, we define

u
(𝑖)
𝜓𝑖

:= 𝑝(𝑖) − ∇𝑓(𝑝
(𝑖))

𝜓𝑖
, (10)

and solve the following subproblem:

𝑝(𝑖+1) = argmin
𝑝

1

2

⃦⃦⃦
𝑝− u

(𝑖)
𝜓𝑖

⃦⃦⃦2

+
𝑔(𝑝)

𝜓𝑖
, (11)

where 𝜓𝑖 is defined by the following “spectral” formula:

𝜓𝑖 =

(︁
𝑝(𝑖) − 𝑝(𝑖−1)

)︁𝑇 (︁
∇𝑓(𝑝(𝑖))−∇𝑓(𝑝(𝑖−1))

)︁
‖𝑝(𝑖) − 𝑝(𝑖−1)‖2

. (12)

When 𝑖 = 0, we use a pre-assigned value for 𝜓0 instead.
(In our LBFGS choice for 𝐻𝑡, we use the value of 𝛾𝑡 from
(6b) as the initial estimate of 𝜓0.) The exact minimizer of
(11) can be difficult to compute for general regularizers 𝑔.
However, approximate solutions of (11) suffice to provide a
convergence rate guarantee for solving (2) [6, 9, 18, 19]. Since
it is known (see [11]) that the eigenvalues of 𝐻 are upper-
and lower-bounded in a positive range after the safeguard
(9) is applied, we can guarantee that this initialization of
𝜓𝑖 is bounded within a positive range; see Section 3. The
initial value of 𝜓𝑖 defined in (12) is increased successively by
a chosen constant factor 𝛽 > 1, and 𝑝(𝑖+1) is recalculated
from (11), until the following sufficient decrease criterion is
satisfied:

𝑄
(︁
𝑝(𝑖+1)

)︁
≤ 𝑄

(︁
𝑝(𝑖)

)︁
− 𝜓𝑖𝜎0

2

⃦⃦⃦
𝑝(𝑖+1) − 𝑝(𝑖)

⃦⃦⃦2

, (13)

for some specified 𝜎0 ∈ (0, 1). Note that the evaluation of
𝑄(𝑝) needed in (13) can be done efficiently through a parallel
computation of (∇𝑓(𝑝) +∇𝑓(𝑤))𝑇𝑝/2 plus the 𝑔(𝑝) term.
From the boundedness of 𝐻, one can easily prove that (13)
is satisfied after a finite number of increases of 𝜓𝑖, as we will
show in Section 3. In our algorithm, SpaRSA runs until either
a fixed number of iterations is reached, or when some certain
inner stopping condition for optimizing (2) is satisfied.

For general 𝐻, the computational bottleneck of ∇𝑓 would
take 𝑂(𝑑2) operations to compute the 𝐻𝑝(𝑖) term. How-
ever, for our LBFGS choice of 𝐻𝑘, this cost is reduced to
𝑂(𝑚𝑑+𝑚2) by utilizing the matrix structure, as shown in
the following formula:

∇𝑓 (𝑝) = ∇𝑓 (𝑤) +𝐻𝑝 = ∇𝑓(𝑤) + 𝛾𝑝− 𝑈𝑡
(︁
𝑀−1
𝑡

(︁
𝑈𝑇𝑡 𝑝

)︁)︁
.

(14)

The computation of (14) can be parallelized, by first par-
allelizing computation of the inner product 𝑈𝑇𝑡 𝑝(𝑖) via the
formula

𝐾∑︁
𝑘=1

(𝑈𝑡)
𝑇
𝐽𝑘,:

𝑝
(𝑖)
𝐽𝑘

with 𝑂(𝑚) communication. (We implement the parallel inner
products as described in Section 2.3.) We either construct the
whole vector u in (10) on all machines, or let each machine
compute a subvector of u in (10). The former scheme is most
suitable when 𝑔 is non-separable, but the latter has a lower
computational burden per machine, in cases for which it is
feasible to apply. We describe the latter scheme in more detail.
The 𝑘th machine locally computes 𝑝

(𝑖)
𝐽𝑘

without communi-
cating the whole vector. Then at each iteration of SpaRSA,
partial inner products between (𝑈𝑡)𝐽𝑘,: and 𝑝

(𝑖)
𝐽𝑘

can be com-
puted locally, and the results are assembled with one 𝑂(𝑚)
communication. This technique also suggests a spatial advan-
tage of our method: The rows of 𝑆𝑡 and 𝑌𝑡 can be stored in
a distributed manner consistent with the subvector partition.
This approach incurs 𝑂(𝑚) communication cost per SpaRSA
iteration, with the computational cost reduced from 𝑂(𝑚𝑑) to
𝑂(𝑚𝑑/𝐾) per machine. Since both the 𝑂(𝑚) communication
cost and the 𝑂(𝑚𝑑/𝐾) computational cost are inexpensive
when 𝑚 is small, in comparison to the computation of ∇𝑓 ,
one can afford to conduct multiple iterations of SpaRSA
at every main iteration. Note that the latency incurred at
every communication as discussed in (3) can be capped by
setting a maximum iteration limit for SpaRSA. Finally, after
the SpaRSA procedure terminates, all machines conduct one
𝑂(𝑑) communication to gather the update step 𝑝.

The distributed implementation of SpaRSA for solving (2)
is summarized in Algorithm 1.

2.5 Line Search
After obtaining an update direction 𝑝𝑘 by approximately
minimizing 𝑄𝐻𝑘(·;𝑤𝑘), a line search procedure is usually
needed to find a step size 𝛼𝑘 that ensures sufficient decrease
in the objective value. We follow Tseng and Yun [21] by using
a modified-Armijo-type backtracking line search to find a
suitable step size 𝛼. Given the current iterate 𝑤, the update
direction 𝑝, and parameters 𝜎1, 𝜃 ∈ (0, 1), we set

∆ := ∇𝑓 (𝑤)𝑇 𝑝+ 𝑔 (𝑤 + 𝑝)− 𝑔 (𝑤) (15)

and pick the step size as the largest of 𝜃0, 𝜃1, . . . satisfying

𝐹 (𝑤 + 𝛼𝑝) ≤ 𝐹 (𝑤) + 𝛼𝜎1∆. (16)

The computation of ∆ can again be done in a distributed
manner. First,𝑋𝑇

𝑘 𝑝 can be computed locally on each machine,
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Algorithm 1: Distributed SpaRSA for solving (2) with
LBFGS quadratic approximation on machine 𝑘

1: Given 𝛽 > 1, 𝜎0 ∈ (0, 1), 𝑀−1
𝑡 , 𝑈𝑡, and 𝛾𝑡;

2: Set 𝑝
(0)
𝐽𝑘
← 0;

3: for 𝑖 = 0, 1, 2, . . . do
4: if 𝑖 = 0 then
5: 𝜓 = 𝛾𝑡;
6: else
7: Compute 𝜓 in (12) through

𝐾∑︁
𝑗=1

(︁
𝑝
(𝑖)
𝐽𝑗
− 𝑝

(𝑖−1)
𝐽𝑗

)︁𝑇 (︁
∇𝐽𝑗𝑓

(︁
𝑝(𝑖)

)︁
−∇𝐽𝑗𝑓

(︁
𝑝(𝑖−1)

)︁)︁
,

and
𝐾∑︁
𝑗=1

⃦⃦⃦
𝑝
(𝑖)
𝐽𝑗
− 𝑝

(𝑖−1)
𝐽𝑗

⃦⃦⃦2

;

◁ 𝑂(1) comm.
8: end if
9: Obtain ◁ 𝑂(𝑚) comm.

𝑈𝑇𝑡 𝑝
(𝑖) =

𝐾∑︁
𝑗=1

(𝑈𝑡)
𝑇
𝐽𝑗 ,:

𝑝
(𝑖)
𝐽𝑗
;

10: Compute

∇𝐽𝑘𝑓
(︁
𝑝(𝑖)

)︁
= ∇𝐽𝑘𝑓 (𝑤)+𝛾𝑝

(𝑖)
𝐽𝑘
−(𝑈𝑡)𝐽𝑘,:

(︁
𝑀−1
𝑡

(︁
𝑈𝑇𝑡 𝑝

(𝑖)
)︁)︁

by (14);
11: while TRUE do
12: Solve (11) on coordinates indexed by 𝐽𝑘 to obtain

𝑝𝐽𝑘 ;
13: if (13) holds ◁ 𝑂(1) comm.

then
14: 𝑝

(𝑖+1)
𝐽𝑘

← 𝑝𝐽𝑘 ; 𝜓𝑖 ← 𝜓;
15: Break;
16: end if
17: 𝜓 ← 𝛽𝜓;
18: Re-solve (11) with the new 𝜓 to obtain a new 𝑝𝐽𝑘 ;
19: end while
20: Break if some stopping condition is met;
21: end for
22: Gather the final solution 𝑝 ◁ 𝑂(𝑑) comm.

then the first term in (15) is obtained by sending a scalar
over the network. When 𝑔 is block-separable, its computation
can also be distributed across machines. The vector 𝑋𝑇

𝑘 𝑝 is
then used to compute the left-hand side of (16) for arbitrary
values of 𝛼. Writing 𝑋𝑇

𝑘 (𝑤 + 𝛼𝑝) =
(︀
𝑋𝑇
𝑘 𝑤

)︀
+ 𝛼

(︀
𝑋𝑇
𝑘 𝑝

)︀
, we

see that once 𝑋𝑇
𝑘 𝑤 and 𝑋𝑇

𝑘 𝑝 are known, we can evaluate
𝑋𝑇
𝑘 (𝑤 + 𝛼𝑝) via an “axpy” operation (weighted sum of two

vectors). Because 𝐻𝑡 defined in (5) attempts to approximate
the real Hessian, the unit step 𝛼 = 1 frequently satisfies (16),
so we use the value 1 as the initial guess. Aside from the
communication needed to compute the summation of the 𝑓𝑘
terms in the evaluation of 𝐹 , the only other communication

Algorithm 2: A distributed proximal variable-metric
LBFGS method with line search for (1)

1: Given 𝜃, 𝜎1 ∈ (0, 1), 𝛿 > 0, an initial point 𝑤 = 𝑤0,
distributed 𝑋 = [𝑋1, . . . , 𝑋𝐾 ];

2: for Machines 𝑘 = 1, . . . ,𝐾 in parallel do
3: Compute 𝑋𝑇

𝑘 𝑤 and 𝑓𝑘(𝑋𝑇
𝑘 𝑤);

4: 𝐻 ← 𝑎𝐼 for some 𝑎 > 0 (use (8) if possible);
5: Obtain 𝐹 (𝑤); ◁ 𝑂(1) comm.
6: for 𝑡 = 0, 1, 2, . . . do
7: Compute ∇𝑓(𝑤) through (4); ◁ 𝑂(𝑑) comm.
8: if 𝑡 ̸= 0 and (9) holds for (𝑠𝑡−1,𝑦𝑡−1) then
9: Update 𝑈 , 𝑀 , and 𝛾 by (6)-(7); ◁ 𝑂(𝑚) comm.

10: Construct a new 𝐻 from (5);
11: end if
12: if 𝐻 = 𝑎𝐼 then
13: Solve (2) directly to obtain 𝑝;
14: else
15: Solve (2) using Algorithm 1 either in a

distributed manner or locally to obtain 𝑝;
16: end if
17: Compute 𝑋𝑇

𝑘 𝑝;
18: Compute ∆ defined in (15); ◁ 𝑂(1) comm.
19: for 𝑖 = 0, 1, . . . do
20: 𝛼 = 𝜃𝑖;
21: Compute (𝑋𝑇

𝑘 𝑤) + 𝛼(𝑋𝑇
𝑘 𝑝);

22: Compute 𝐹 (𝑤 + 𝛼𝑝); ◁ 𝑂(1) comm.
23: if 𝐹 (𝑤 + 𝛼𝑝) ≤ 𝐹 (𝑤) + 𝜎1𝛼∆ then
24: 𝑤 ← 𝑤 + 𝛼𝑝, 𝐹 (𝑤)← 𝐹 (𝑤 + 𝛼𝑝);
25: 𝑋𝑇

𝑘 𝑤 ← 𝑋𝑇
𝑘 𝑤 + 𝛼𝑋𝑇

𝑘 𝑝;
26: 𝑤𝑡+1 ← 𝑤;
27: 𝑠𝑡 ← 𝑤𝑡+1 −𝑤𝑡, 𝑦𝑡 ← ∇𝑓(𝑤𝑡+1)−∇𝑓(𝑤𝑡);
28: Break;
29: end if
30: end for
31: end for
32: end for

needed is to share the update direction 𝑝 if (2) was solved in a
distributed manner. Thus, two rounds of 𝑂(𝑑) communication
are incurred per main iteration. Otherwise, if each machine
solves the same subproblem (2) locally, then only one round
of 𝑂(𝑑) communication is required.

Our distributed algorithm for (1) is summarized in Algo-
rithm 2.

2.6 Cost Analysis
We now summarize the costs of our algorithm. For the dis-
tributed version of Algorithm 1, each iteration costs

𝑂

(︂
𝑑

𝐾
+
𝑚𝑑

𝐾
+𝑚2

)︂
= 𝑂

(︂
𝑚𝑑

𝐾
+𝑚2

)︂
(17)

in computation and

𝑂 (𝑚+ 1× number of times (13) is evaluated)
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in communication. In the next section, we will show that
(13) is accepted in a constant number of times and thus the
overall communication cost is 𝑂(𝑚).

For Algorithm 2, the computational cost per iteration is

𝑂

(︂
#nnz
𝐾

+
𝑛

𝐾
+ 𝑑+

𝑚𝑑

𝐾
+

𝑑

𝐾

)︂
= 𝑂

(︂
#nnz
𝐾

+ 𝑑+
𝑚𝑑

𝐾

)︂
,

(18)
where #nnz is the number of nonzero elements in 𝑋, and
the communication cost is

𝑂 (1 +𝑚+ 𝑑) = 𝑂 (𝑑) .

We note that the costs of Algorithm 1 are dominated by
those of Algorithm 2 if a fixed number of SpaRSA iterations
is conducted every main iteration.

3 COMMUNICATION COMPLEXITY
The use of an iterative solver for the subproblem (2) generally
results in an inexact solution. We first show that running
SpaRSA for any fixed number of iterations guarantees a step
𝑝 whose accuracy is sufficient to prove overall convergence.

Lemma 3.1. Using 𝐻𝑡 as defined in (5) with the safeguard
mechanism (9) in (2), we have the following.

(1) There exist constants 𝑐1 ≥ 𝑐2 > 0 such that 𝑐1𝐼 ⪰ 𝐻𝑡 ⪰
𝑐2𝐼 for all main iterations. Moreover, ‖𝑋𝑇𝑋‖𝐿 ≥ 𝛾𝑡 ≥
𝛿 for all 𝑡 > 0.

(2) The initial estimate of 𝜓𝑖 at every SpaRSA iteration is
bounded within the range of [min{𝑐2, 𝛿},max{𝑐1, ‖𝑋𝑇𝑋‖𝐿}],
and the final accepted value 𝜓𝑖 is upper-bounded.

(3) SpaRSA is globally Q-linear convergent in solving (2).
Therefore, there exists 𝜂 ∈ [0, 1) such that if we run at
least 𝑆 iterations of SpaRSA for all main iterations for
any 𝑆 > 0, the approximate solution 𝑝 satisfies

− 𝜂𝑆𝑄* = 𝜂𝑆 (𝑄 (0)−𝑄*) ≥ 𝑄 (𝑝)−𝑄*, (19)

where 𝑄* is the optimal objective of (2).

Lemma 3.1 establishes how the number of iterations of
SpaRSA affects the inexactness of the subproblem solution.
Given this measure, we can leverage the results developed in
Lee and Wright [9] to obtain iteration complexity guarantees
for our algorithm. Since in our algorithm, communication
complexity scales linearly with iteration complexity, this
guarantee provides a bound on the amount of communication.
In particular, our method communicates 𝑂(𝑑+𝑚𝑆) bytes
per iteration (where 𝑆 is the number of SpaRSA iterations
used, as in Lemma 3.1) and the second term can usually be
ignored for small 𝑚.

We show next that the step size generated by our line search
procedure in Algorithm 2 is lower bounded by a positive value.

Lemma 3.2. If SpaRSA is run at least 𝑆 iterations in
solving (2), the corresponding ∆ defined in (15) satisfies

∆ ≤ − 𝑐2 ‖𝑑‖2

(1 + 𝜂𝑆/2)
. (20)

Moreover, the backtracking subroutine in Algorithm 2 termi-
nates in finite steps and produces a step size

𝛼 ≥ 𝛼̄ ≥ min

{︂
1,

2𝜃 (1− 𝜎1) 𝑐2
‖𝑋𝑇𝑋‖𝐿 (1 + 𝜂𝑆/2)

}︂
. (21)

This result is just a worst-case guarantee; in practice we
often observe that the line search procedure terminates with
𝛼 = 1 for our choice of 𝐻, as we see in our experiments.

Next, we analyze communication complexity of Algorithm 2.

Theorem 3.3. If we apply Algorithm 2 to solve (1), and
Algorithm 1 is run for 𝑆 iterations at each main iteration,
then the following claims hold.
∙ Suppose that the following variant of strong convexity holds:

There exists 𝜇 > 0 such that for any 𝑤 and any 𝑎 ∈ [0, 1],
we have

𝐹 (𝑎𝑤 + (1− 𝑎)𝑃Ω (𝑤)) (22)

≤ 𝑎𝐹 (𝑤) + (1− 𝑎)𝐹 * − 𝜇𝑎 (1− 𝑎)
2

‖𝑤 − 𝑃Ω (𝑤)‖2 ,

where 𝐹 * is the optimal objective value of (1), Ω is the
solution set, and 𝑃Ω is the projection onto this set. Then
Algorithm 2 converges globally at a Q-linear rate. That is,

𝐹 (𝑤𝑡+1)− 𝐹 *

𝐹 (𝑤𝑡)− 𝐹 * ≤ 1−
𝛼̄𝜎1

(︀
1− 𝜂𝑆

)︀
𝜇

𝜇+ 𝑐1
, ∀𝑡.

Therefore, to get an approximate solution of (1) that is 𝜖-
accurate in the sense of objective value, we need to perform
at most

𝑂

(︂
𝜇+ 𝑐1

𝜇𝜎1𝛼̄ (1− 𝜂𝑆) log
1

𝜖

)︂
(23)

rounds of 𝑂(𝑑) communication.
∙ When 𝐹 is convex, and the level set defined by 𝑤0 is

bounded, define

𝑅0 := sup
𝑤:𝐹 (𝑤)≤𝐹 (𝑤0)

‖𝑤 − 𝑃Ω(𝑤)‖ .

Then we obtain the following expressions for rate of con-
vergence of the objective value.
(1) When 𝐹 (𝑤𝑡)− 𝐹 * ≥ 𝑐1𝑅2

0,

𝐹 (𝑤𝑡+1)− 𝐹 *

𝐹 (𝑤𝑡)− 𝐹 * ≤ 1−
(︀
1− 𝜂𝑆

)︀
𝜎1𝛼̄

2
.

(2) Otherwise, we have globally for all 𝑡 that

𝐹 (𝑤𝑡)− 𝐹 *

2
≤ 𝑐1𝑅

2
0 + 𝐹 (𝑤0)− 𝐹 *

𝜎1𝑡(1− 𝜂𝑆)𝛼̄
.

This implies a communication complexity of⎧⎪⎨⎪⎩
𝑂

(︂
2

(1−𝜂𝑆)𝜎1𝛼̄
log 1

𝜖

)︂
if 𝜖 ≥ 𝑐1𝑅2

0,

2(𝑐1𝑅2
0+𝐹 (𝑤0)−𝐹*)

𝜎1(1−𝜂𝑆)𝛼̄𝜖
else.

∙ If 𝐹 is non-convex, the norm of the proximal gradient steps

𝐺𝑡 := argmin
𝑝
∇𝑓 (𝑤𝑡)

𝑇 𝑝+
‖𝑝‖2

2
+ 𝑔 (𝑤𝑡 + 𝑝)
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converge to zero at a rate of 𝑂(1/
√
𝑡) in the following sense:

min
0≤𝑖≤𝑡

‖𝐺𝑖‖2 ≤
𝐹 (𝑤0)− 𝐹 *

𝛾 (𝑡+ 1)

𝑐21

(︂
1 + 1

𝑐2
+

√︁
1− 2

𝑐1
+ 1

𝑐22

)︂2

2𝑐2𝛼̄(1− 𝜂𝑆)
.

Note that it is known that the norm of 𝐺𝑡 is zero if and
only if 𝑤𝑡 is a stationary point [9], so this measure serves as
a first-order optimality condition.

Our computational experiments cover the case of 𝐹 convex;
exploration of the method on nonconvex 𝐹 is left for future
work.

4 RELATED WORKS
The framework of using (2) to generate update directions
for optimizing (1) has been discussed in existing works with
different choices of 𝐻, but always in the single-core setting.
Lee et al. [10] focused on using ∇2𝑓 as 𝐻, and proved local
convergence results under certain additional assumptions. In
their experiment, they used AG to solve (2). However, in
distributed environments, using ∇2𝑓 as 𝐻 incurs an 𝑂(𝑑)
communication cost per AG iteration in solving (2), because
computation of the term ∇2𝑓(𝑤)𝑝 = 𝑋∇2𝑓(𝑋𝑇𝑤)𝑋𝑇𝑝
requires one allreduce operation to calculate a weighted sum
of the columns of 𝑋.

Scheinberg and Tang [18] and Ghanbari and Scheinberg [6]
showed global convergence rate results for a method based
on (2) with bounded 𝐻, and suggested using randomized
coordinate descent to solve (2). In the experiments of these
two works, they used the same choice of 𝐻 as we do in this
paper, with CD as the solver for (2), which is well suited to
their single-machine setting. Aside from our extension to the
distributed setting and the use of SpaRSA, the third major
difference between their algorithm and ours is that they do
not conduct line search on the step size. Instead, when the
obtained solution with a unit step size does not result in
sufficient objective value decrease, they add a scaled identity
matrix to 𝐻 and solve (2) again starting from 𝑝(0) = 0. The
cost of repeatedly solving (2) from scratch can be high, which
results in an algorithm with higher overall complexity. This
potential inefficiency is exacerbated further by the inefficiency
of coordinate descent in the distributed setting.

Our method can be considered as a special case of the
algorithmic framework in Bonettini et al. [3], Lee and Wright
[9], which both focus on analyzing the theoretical guarantees
under various conditions. In the experiments of Bonettini et al.
[3], 𝐻 is obtained from the diagonal entries of ∇2𝑓 , making
the subproblem (2) easy to solve, but this simplification does
not take full advantage of curvature information. Although
our theoretical convergence analysis follows directly from
Lee and Wright [9], that paper does not provide details
of experimental results or implementation, and its analysis
focuses on general 𝐻 rather than the LBFGS choice we use
here.

Some methods consider solving (1) in a distributed envi-
ronment where 𝑋 is partitioned feature-wise (i.e. along rows
instead of columns). There are two potential disadvantages of

Table 1: Data statistics.

Data set 𝑛 𝑑 #nonzeros
news 19,996 1,355,191 9,097,916
epsilon 400,000 2,000 800,000,000
webspam 350,000 16,609,143 1,304,697,446
avazu-site 25,832,830 999,962 387,492,144

this approach. First, new data points can easily be assigned to
one of the machines in our approach, whereas in the feature-
wise approach, the features of all new points would need to
be distributed around the machines. Second, local curvature
information is obtained, so the update direction can be poor
if the data is distributed nonuniformly across features. (Data
is more likely to be distributed evenly across instances than
across features.) In the extreme case in which each machine
contains only one row of 𝑋, only the diagonal entries of the
Hessian can be obtained locally, so the method reduces to a
scaled version of proximal gradient.

5 NUMERICAL EXPERIMENTS
We investigate the empirical performance of Algorithm 2
in solving ℓ1-regularized logistic regression problems. The
code used in our experiment is available at http://github.
com/leepei/dplbfgs/. Given training data points (𝑥𝑖, 𝑦𝑖) ∈
R𝑑 × {−1, 1} for 𝑖 = 1, . . . , 𝑛, the objective function is

𝐹 (𝑤) = 𝐶

𝑛∑︁
𝑖=1

log
(︁
1 + 𝑒−𝑦𝑖𝑥

𝑇
𝑖 𝑤

)︁
+ ‖𝑤‖1, (24)

where 𝐶 > 0 is a parameter prespecified to trade-off between
the loss term and the regularization term. We fix 𝐶 to 1
for simplicity in our experiments. We consider the publicly
available binary classification data sets listed in Table 11,
and partitioned the instances evenly across machines.

The parameters of our algorithm were set as follows: 𝜃 =
0.5, 𝛽 = 2, 𝜎0 = 10−2, 𝜎1 = 10−4, 𝑚 = 10, 𝛿 = 10−10. The
parameters in SpaRSA follow the setting in [23], 𝜃 is set to
halve the step size each time, the value of 𝜎0 follows the
default experimental setting of [7], 𝛿 is set to a small enough
number, and 𝑚 = 10 is a common choice for LBFGS.

We ran our experiments on a local cluster of 16 machines
running MPICH2, and all algorithms are implemented in
C/C++. The inversion of 𝑀 defined in (6) is performed
through LAPACK [1]. The comparison criteria are the relative
objective error (𝐹 (𝑤) − 𝐹 *)/𝐹 *, versus either the amount
communicated (divided by 𝑑) or the overall running time.
The former criterion is useful in estimating the performance
in environments in which communication cost is extremely
high.

1Downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/.
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Table 2: Different stopping conditions of SpaRSA
as an approximate solver for (2). We show required
amount of communication (divided by 𝑑) and run-
ning time (in seconds) to reach 𝐹 (𝑤𝑡)−𝐹 * ≤ 10−3𝐹 *.

Data set 𝜖1 Communication Time

news20
10−1 28 11
10−2 25 11
10−3 23 14

epsilon
10−1 144 45
10−2 357 61
10−3 687 60

webspam
10−1 452 3254
10−2 273 1814
10−3 249 1419

5.1 Effect of Inexactness in the
Subproblem Solution

We first examine how the degree of inexactness of the approx-
imate solution of subproblems (2) affects the convergence
of the overall algorithm. Instead of treating SpaRSA as a
steadily linearly converging algorithm, we take it as an al-
gorithm that sometimes decreases the objective much faster
than the worst-case guarantee, thus an adaptive stopping
condition is used. In particular, we terminate Algorithm 1
when the norm of the current update step is smaller than
𝜖1 times that of the first update step, for some prespecified
𝜖1 > 0. From the proof of Lemma 3.1, the norm of the up-
date step bounds the value of 𝑄(𝑝) − 𝑄* both from above
and from below, and thus serves as a good measure of the
solution precision. In Table 2, we compare runs with the
values 𝜖1 = 10−1, 10−2, 10−3. For the datasets news20 and
webspam, it is as expected that tighter solution of (2) re-
sults in better updates and hence lower communication cost.
This may not result in a longer convergence time. As for the
dataset epsilon, which has a smaller data dimension 𝑑, the
𝑂(𝑚) communication cost per SpaRSA iteration for calcu-
lating ∇𝑓 is significant in comparison. In this case, setting
a tighter stopping criteria for SpaRSA can result in higher
communication cost and longer running time.

In Table 3, we show the distribution of the step sizes over
the main iterations, for the same set of values of 𝜖1. As we
discussed in Section 3, although the smallest 𝛼 can be much
smaller than one, the unit step is usually accepted. Therefore,
although the worst-case communication complexity analysis
is dominated by the smallest step encountered, the practical
behavior is much better.

5.2 Comparison with Other Methods
Now we compare our method with two state-of-the-art dis-
tributed algorithms for (1). In addition to a proximal-gradient-
type method that can be used to solve general (1) in dis-
tributed environments easily, we also include one solver specif-
ically designed for ℓ1-regularized problems in our comparison.
These methods are:

Table 3: Step size distributions.

Data set 𝜖1 percent of 𝛼 = 1 smallest 𝛼

news20
10−1 95.5% 2−3

10−2 95.5% 2−4

10−3 95.5% 2−3

epsilon
10−1 96.8% 2−5

10−2 93.4% 2−6

10−3 91.2% 2−3

webspam
10−1 98.5% 2−3

10−2 97.6% 2−2

10−3 97.2% 2−2

∙ DPLBFGS: our Distributed Proximal LBFGS approach.
We fix 𝜖1 = 10−2 in this experiment.
∙ SPARSA [23]: the method described in Section 2.4, but

applied directly to (1).
∙ OWLQN [2]: an orthant-wise quasi-Newton method specif-

ically designed for ℓ1-regularized problems. We fix 𝑚 = 10
in the LBFGS approximation.

We implement all methods in C/C++ and MPI. Note that
the AG method [17] can also be used, but its empirical
performance has been shown to be similar to SpaRSA [24]
and it requires strong convexity and Lipschitz parameters
to be estimated, which induces an additional cost. A further
examination on different values of 𝑚 indicates that conver-
gence speed of our method improves with larger 𝑚, while in
OWLQN, larger 𝑚 usually does not lead to better results.
We use the same value of 𝑚 for both methods and choose a
value that favors OWLQN.

The results are provided in Figure 1. Our method is always
the fastest in both criteria. For epsilon, our method is orders of
magnitude faster, showing that correctly using the curvature
information of the smooth part is indeed beneficial in reducing
the communication complexity.

It is possible to include specific heuristics for ℓ1-regularized
problems, such as those applied in Yuan et al. [25], Zhong et al.
[27], to further accelerate our method, and the exploration
on this direction is an interesting topic for future work.

6 CONCLUSIONS
In this work, we propose a practical and communication-
efficient distributed algorithm for solving general regularized
nonsmooth ERM problems. Our algorithm enjoys fast perfor-
mance both theoretically and empirically and can be applied
to a wide range of ERM problems. It is possible to extend
our approach for solving the distributed dual ERM problem
with a strongly convex primal regularizer, and we expect our
framework to outperform state of the art, which only uses
block-diagonal parts of the Hessian that can be computed
locally. These topics are left for future work.
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A PROOFS
We provide proof of Lemma 3.1 in this section. The rest of
Section 3 directly follows the results in Lee and Wright [9]
by noting that ∇𝑓(𝑤) is ‖𝑋𝑇𝑋‖𝐿-Lipschitz continuous, and
are therefore omitted.

Proof of Lemma 3.1. We prove the three results sepa-
rately.

(1) The boundedness of 𝐻𝑡 directly follow from the results
in Li and Fukushima [11]. A more detailed proof can
be found in, for example, Lee and Wright [8, Appendix
E]. The lower bound of 𝛾𝑡 is directly through (9), and
the upper bound is from the Lipschitz continuity of
∇𝑓 .

(2) By directly expanding ∇𝑓 , we have that for any 𝑝1,𝑝2,

∇𝑓(𝑝1)−∇𝑓(𝑝2) = ∇𝑓(𝑤) +𝐻𝑝1 −
(︁
∇𝑓(𝑤) +𝐻𝑝2

)︁
= 𝐻(𝑝1 − 𝑝2).

Therefore, we have(︁
∇𝑓(𝑝1)−∇𝑓(𝑝2)

)︁𝑇
(𝑝1 − 𝑝2)

‖𝑝1 − 𝑝2‖
2 =

‖𝑝1 − 𝑝2‖
2
𝐻

‖𝑝1 − 𝑝2‖
2 ∈ [𝑐2, 𝑐1]

for bounding 𝜓𝑖 for 𝑖 > 0, and the bound for 𝜓0 is
directly from the bounds of 𝛾𝑡. The combined bound
is therefore [min{𝑐2, 𝛿},max{𝑐1, ‖𝑋𝑇𝑋‖𝐿}]. Next, we
show that the final 𝜓𝑖 is always upper-bounded. The
right-hand side of (11) is equivalent to the following:

argmin
𝑑
𝑄̂𝜓𝑖 (𝑑) := ∇𝑓(𝑝

(𝑖))𝑇𝑑+
𝜓𝑖 ‖𝑑‖2

2
+𝑔 (𝑑+ 𝑝)−𝑔 (𝑝) .

(25)
Denote the optimal solution by 𝑑*, then we have
𝑝(𝑖+1) = 𝑝(𝑖) + 𝑑*. Because 𝐻 is upper-bounded by 𝑐1,
we have that ∇𝑓 is 𝑐1-Lipschitz continuous. Therefore,
using Lemma 12 of Lee and Wright [9], we get

𝑄̂𝜓𝑖 (𝑑
*) ≤ −𝜓𝑖

2
‖𝑑*‖2 . (26)

We then have from 𝑐1-Lipschitz continuity of ∇𝑓 that

𝑄
(︁
𝑝(𝑖+1)

)︁
−𝑄

(︁
𝑝(𝑖)

)︁
≤ ∇𝑓(𝑝(𝑖))𝑇

(︁
𝑝(𝑖+1) − 𝑝(𝑖)

)︁
+
𝑐1
2

⃦⃦⃦
𝑝(𝑖+1) − 𝑝(𝑖)

⃦⃦⃦2

+ 𝑔
(︁
𝑝(𝑖+1)

)︁
− 𝑔

(︁
𝑝(𝑖)

)︁
(25)
= 𝑄̂𝜓𝑖(𝑑

*)− 𝜓𝑖
2
‖𝑑*‖2 + 𝑐1

2
‖𝑑*‖2

(26)
≤

(︁𝑐1
2
− 𝜓𝑖

)︁
‖𝑑*‖2.

Therefore, whenever
𝑐1
2
− 𝜓𝑖 ≤ −

𝜎0𝜓𝑖
2

,

(13) holds. This is equivalent to

𝜓𝑖 ≥
𝑐1

2− 𝜎0
.

Since 𝜎0 ∈ (0, 1), we must have 𝑐1/(2−𝜎0) ∈ (𝑐1/2, 𝑐1),
Note that the initialization of 𝜓𝑖 is upper-bounded by
𝑐1 for all 𝑖 > 1, so the final 𝜓𝑖 is upper bounded by
2𝑐1. Together with the first iteration that we start with
𝜓0 = 𝛾𝑡, we have that 𝜓𝑖 are always upper-bounded
by max{2𝑐1, 𝛾𝑡}, and we have already proven 𝛾𝑡 is
upper-bounded by ‖𝑋𝑇𝑋‖𝐿.

(3) We note that since 𝑄 is 𝑐2-strongly convex, the follow-
ing condition holds.

min𝑠∈∇𝑓(𝑝(𝑖+1))+𝜕𝑔(𝑝(𝑖+1)) ‖𝑠‖
2

2𝑐2
≥ 𝑄

(︁
𝑝(𝑖+1)

)︁
−𝑄* (27)

On the other hand, from the optimality condition of
(25), we have that

𝜓𝑖𝑑
* = ∇𝑓

(︁
𝑝(𝑖)

)︁
+ 𝑠𝑖+1, (28)

for some
𝑠𝑖+1 ∈ 𝜕𝑔

(︁
𝑝(𝑖+1)

)︁
.

Therefore,

𝑄
(︁
𝑝(𝑖+1)

)︁
−𝑄*

(27)
≤ 1

2𝑐2

⃦⃦⃦
∇𝑓

(︁
𝑝(𝑖+1)

)︁
−∇𝑓

(︁
𝑝(𝑖)

)︁
+∇𝑓

(︁
𝑝(𝑖)

)︁
+ 𝑠𝑖+1

⃦⃦⃦2

(28)
≤ 1

𝑐2

⃦⃦⃦
∇𝑓

(︁
𝑝(𝑖+1)

)︁
−∇𝑓

(︁
𝑝(𝑖)

)︁⃦⃦⃦2

+ ‖𝜓𝑖𝑑*‖2

≤ 1

𝑐2

(︀
𝑐21 + 𝜓2)︀ ‖𝑑*‖2 . (29)

By combining (13) and (29), we obtain

𝑄
(︁
𝑝(𝑖+1)

)︁
−𝑄

(︁
𝑝(𝑖)

)︁
≤ −𝜎0𝜓𝑖

2
‖𝑑*‖2

≤ −𝜎0𝜓𝑖
2

𝑐2
𝑐21 + 𝜓2

(︁
𝑄
(︁
𝑝(𝑖+1)

)︁
−𝑄*

)︁
.

Rearranging the terms, we obtain(︂
1 +

𝑐2𝜎0𝜓𝑖
2(𝑐21 + 𝜓2)

)︂(︁
𝑄
(︁
𝑝(𝑖+1)

)︁
−𝑄*

)︁
≤ 𝑄

(︁
𝑝(𝑖)

)︁
−𝑄*,

showing Q-linear convergence of SpaRSA, with

𝜂 =

(︂
1 +

𝑐2𝜎0𝜓𝑖
2 (𝑐21 + 𝜓2

𝑖 )

)︂−1

∈ [0, 1]. □
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